The Center for Computational Biotechnology and Genomic Medicine (CCBGM) leverages the power of data analytics, artificial intelligence, machine learning, and high-performance computation to advance health care discovery. To do this, CCBGM combines research insights in engineering and genomic biology with the world-renowned expertise in individualized medicine and clinical research and practice of the Mayo Clinic. It uses the power of computational predictive genomics to advance pressing societal issues such as enabling patient-specific cancer treatment, determining phenotype from a person's or organism's genotype, understanding and modifying microbiomes, and meeting the rapidly expanding need for food.
CCBGM offers:
Liewei Wang
Center Director
(507) 293-0408
wang.liewei@mayo.edu
Leila Jones
Research Program Manager - Mayo
(507) 266-0991
jones.leila@mayo.edu
Ravishankar RaviIyer
Center Director
(217) 333-7774
rkiyer@illinois.edu
Kathleen Atchley
Research Program Manager - University of Illinois
(217) 244-9527
katchley@illinois.edu
These following topics leverage the multidisciplinary capabilities of the CCBGM team to focus on clinical knowledge in human patients. However, the methods, tools, and algorithms developed as part of these efforts (e.g., microbiome, compression, imaging, genomic security, and acceleration) also apply in the broader context of analyzing the sequence data of crops, animals, and other organisms.
Actionable intelligence
This research area looks at the translation of Big Data to clinical knowledge. The overarching goal is to enhance patient-specific understanding of disease to tailor diagnoses and individualized treatment. Projects in this thematic component develop technologies to identify and classify genomic variants, genes, and drivers for human disease. Specifically, CCBGM develops algorithms to help merge heterogeneous datasets (e.g., multiomics, clinical, and microbiome) and identify statistically significant mutations, genes, metabolites, pathways, and networks that are associated with clinical or functional outcomes.
Computing and data management
This research area focuses on innovations in security, storage, and compression technologies for patient-specific and genomic data. Such methods are required to process and understand large-scale bioinformatics problems.
Systems innovation
Systems innovation research addresses the design and implementation of specialized computer systems to efficiently and accurately execute the algorithms for mining actionable intelligence from multiomics data. CCBGM's application-specific computing systems will have the ability to:
CCBGM designs will also address constant evaluation, monitoring, and quality control of algorithms, workflows, and systems, which will provide the flexibility to incorporate new data, statistical models, and algorithms as they become available.
This external link provides additional information that is consistent with the intended purpose of this site. NSF cannot attest to the accuracy of a non-federal site.
Linking to a non-federal site does not constitute an endorsement by NSF or any of its employees of the sponsors or the information and products presented on the site.
You will be subject to the destination site's privacy policy when you follow the link.